Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs
نویسندگان
چکیده
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data. Keywords—Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.
منابع مشابه
Microsoft Word - ICAME09_opti_leslabay_final
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural ne...
متن کاملMicrosoft Word - 5_.rtf
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural ne...
متن کاملMicrosoft Word - Pilar Rey-del-Castillo.rtf
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural ne...
متن کاملOn a Fuzzy c-means Algorithm for Mixed Incomplete Data Using Partial Distance and Imputation
The focus of fuzzy c-means clustering method is normally used on numerical data. However, most data existing in databases are both categorical and numerical. To date, clustering methods have been developed to analyze only complete data. Although we sometimes encounter data sets that contain one or more missing feature values (incomplete data), traditional clustering methods cannot be used for s...
متن کاملData Mining in Incomplete Numerical and Categorical Data Sets: A Neuro Fuzzy Approach
There are many applications dealing with incomplete data sets that take different approaches to making imputations for missing values. Most tackle the problem for numerical input variables in the data set. However, when there are two types of input variables, numerical and categorical, the state of the art has provided no clear solutions. This paper presents a proposal for handling incomplete n...
متن کامل